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LElTER TO THE EDITOR 

A gauge theory for a quantum system with isospin 

E B Lin 
Department of Mathematics, University of Toledo, Toledo, OH 43606, USA 

Received 13 May 1991 

Abstrad. A quantum system with external symmetry is made into a principal fibre bundle 
with a non-Abelian Lie group as the structure group, and is equipped with a connection. 
A gauge theory for a non-rigid molecule on the basis of the observation that the vector 
bundle associated with the principal fibre bundle provides a setting far quantum mechanics 
of the internal molecular motion. 

Classical dynamics of particles with internal degrees of freedom can be described in 
:e:x af a p i x i p a !  b-xd!e =:.e: :he ca:axgen: b-xd!e aC !he spaceti-e -azifo!d [5 j .  
In contrast to this internal symmetry, we intend to develop the quantum theory of a 
system of particles with external symmetry. Namely, we are interested in a molecule 
which is a system of particles or atomic nuclei in the Bom-Oppenheimer approximation. 

The physical properties of a quantum mechanical system depend upon the types 
of molecules out of which the system is built, but as critically upon the overall 

the symmetry group often greatly simplifies complex problems. In fact, it offers one 
an understanding of the way in which mathematical properties of wavefunctions of a 
quantum system depend upon the physical symmetry of the system. 

In  a series of papers [2,3], Iwai first developed a gauge theory for the quantum 
planar three-body system. He provided a mathematical meaning of non-rigidity of 
molecules. As an application of the connection theory due to Guichardet 111, he also 
established a gauge theory for non-rigid molecules on the basis of the observation that 
the vector bundle associated with the principal fibre bundles gives rise to a setting for 
quantum mechanics of the internal molecular motion. From the viewpoint of Berry’s 
phase, W u  also pointed out that the rotational and vibrational motions are not separable 
in the planar three-body problem [7]. In fact, he showed that the corrected symplectic 
structure gives the correct quantization in the planar three-body system [8]. On the 
basis of Guichardet’s work, Iwai demonstrated that the internal motion of the non-rigid 
molecule can be well described in terms of the gauge theory or the connection theory 
in differential geometry [2,3]. 

In this letter, we shall establish the quantum theory of a non-rigid molecule with 
isospin as external symmetry. A quantum system with external symmetry is made into 
a principal fibre bundle with SU(2) as the structure group, and is equipped with a 
connection. The base manifold of this bundle is called the internal space. A gauge 
theory for non-rigid molecules on  the basis of the observation that the vector bundle 
associated with the principal fibre bundle provides a setting for quantum mechanics 
of the intemal motion. This also illustrates that non-vanishing curvature gives rise to 
the non-separability of motions. 
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geome!riG.! way in  which !he varinlls constitllen!s are put together: On the other hand, 
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For simplicity, we consider a principal fibre bundle with the structure group SU(2). 
The total space is W 4 =  92'. The system is in %'= Q with an orthonormal system { J ~ T = ~ .  

The left action of SU(2) on Q is expressed with respect to the basis {h} in the form 

where 

u,+iu2 u,+iu, 
-u,+iu, u,-iu2 

U ,  = cos a 

u2 = sin a cos p 

ul=  sin 01 sin p cos y 

u,=sin a sin p sin y 

Proposition 1. The system Q =  92'-{0} is made into a principal fibre bundle with 
structure group SU(2) 

w : Q + M - @ '  M := Q/SU(2). 

Proof: We introduce in Q the structure ofthe algebra by setting the following operations 
on basis. 

f , ' = f o  f: = - fo  j # O  

hfo=fof; =h 
f. 'I = -f. J1 i # j  i , j # O  

f J 2 =  -fl f4fs=f1 f 4 f 6  = f 2  

f i f l  = f 2  f Z f 3  = -f, f4fi  =fl 

f i f 4  =f3 f 2 f d  = f 6  f l f d  = f 7  

fih = -f4 f2fs  = f 7  f3h = -f6 

f i f 6  = - f7  f 2 f 6  = -f4 f l f 6  =f3 
f l f 7  =fs  f 2 f 7  = -fs f l f 7  = -f4 
f s f s  = -f, f3f7 =f2 f 6 f 7  = -ft. 

€or each x in Q, x=&,f , ,+X~- ,  cj&, 6 ~ 3 ,  we set 

~ = ( c o s ~ ) f ~ + ( s i n ~ c o s p ) f , - ( s i n ~ s i n ~  cosy)f2+(sinasinPsiny)f ,  

Then the SU(2) action on Q, given by ( l ) ,  is written as the left action: 

X + EX. (2) 
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From (2), we have the corresponding fundamental vector field { F ( } ; = , ,  the 
infinitesimal generator of the SU(2) action on 0 as 

FI =f{(-51 + 6 2  - 53)Jo+ (CO+ 63 + 6dJi + (53- 60- 5t)fz+ (-52 - 51 + 5dJ3 
+ ( - 6 s + b - 6 7 ) f 4 + ( 5 ~ + ~ ~ + + 6 ) J s f ( ~ 7 i ~ ~ - 5 s ) f 6 + ( - # 6 - 5 s + ~ ~ h l f 7 )  

Fz = f { ( 5 2 -  SJh+ (63 + 521Jt + (-600-511f2 + (-61 + 50lJ3 + (5s- 571.L 

+ it7 + e& + (-sa - .Mi + i-& + t&i 
F3 = - 53.h + &Ji - 5 i f 2  + 50J3- 67 J 4  + 6 J -  6 s f b  + 5 d l  
where fx are naturally identified with a/atk .  In  fact, the vector fields E. are vertical, 
and the vector fields Y orthogonal to F; are horizontal [4]; i.e. 

K (  Y,, F,) = 0 X € Q  

when K,  is the inner product naturally induced in the tangent space T,(@. We choose 
the horizontal vector fields Vk, k = 1,2,3,4, 5 ,  as follows: 

VI  = Sofa+ 51fi + &J2+ 63h + LJ4+ 5 s f s  + 5 6 f 6 +  57J7 

vz &fo+ 6 s  fi + 66f2+ 6f3+ <oh+  6th + &fa+ &f7 
V3=-5sJo+ 5.J- & f Z +  66.h  + 5 J -  5oJs + 5 J -  62J7 

Va= -&fo+ 57fi + &Ji- 6&+ 5 J -  &Js - 60h+ 6 l f 7  

Vs= &Jo+ Id- 5 s f z -  54J3- 5d- 6 f s  + 5da+ 5oJ7.  

The linear subspace W,,., of T,( Q) spanned by all the horizontal vectors at x is 
called the horizontal subspace. 

Proposition 2. The connection forms are Lie-algebra-value one-forms (in terms of the 
basis of Lie algebra of SU(2)): 

01 = II-$II-2[-h dfa+to d5’4-51 dC2- 52  d t 3  -& a t 4 + &  dtS+57 d t 6 -  56 dt’l 
0 2  = II 611-2[5z d f n +  6, d5‘ -50 d t2 -  51 df3+  56 d P +  5, dZs- 54 dC6- 5s dt’l 

0 3  = 11511-2[-5, dCO+ 5 2  d5’-51 d6’+ go dt3-67 d t 4 +  56 dP-55 d P + &  dt71 
where ~ ~ f ~ ~ z = Z ~ = o ( ~ ) 2 .  

Let e,, e*, e, be a basis for the Lie algebra (B of SU(2) and c;, m, k, j = 1,2,3 the 
structure constants of (B with respect to e,, e2, e, ,  that is [e,, er] =X, cze,, c z  = 2iqkm, 
j ,  k =  1,2,3, 
where 

in other cases 

Let w = X, o,e, ana ii = 2, fine,. One can obtain the curvature ii by appiying the 
structure equation 

Clm = do, +$I czo, A wk 

where o, is obtained in proposition 2. 

m = 1,2, 3 
1.k 
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To express am in terms of coordinates on internal space M, one can express 
T :  Q+ M explicitly in terms of basis elements in Q. To avoid lengthy pages, we omit 
the expressions here. 

To set up quantum mechanics for internal motion, we associate complex vector 
bundles to the principal SU(2) bundle r :Q+ M as follows [6]. For each j ,  j =  
O,;, 1 , .  . . , let D’ denote unitary representation of SU(2) and W2’+’ its representation 
space. We have ( D ’ ( g ) z ) ,  =X?=’ D:,(g)z. Z E  e”+‘ , gcSU(2) ,  D:, (g) :  matrix ele- J’ 
ments. For a basis jjm) with J,jjm)= mjjm), Casimir operator J’, we have 

J’=X (I,)’= f(J+J-+J_J+) +(J,)’ 

[J’, J;] = [J’, J,] = 0 

~~1 j m )  = j ( j +  1)ljm). 

Define a left action of SU(2) o n  Q x W2”+l by (x, z )  + (gx, D’(g)r)  which gives an 
equivalence relation in Q x W’’+’. We denote the quotent manifold by Q xSu(>, We”+‘ 
which is made into a complex vector bundle = (0 xsu(2) W2Jt1 , rj, M )  via the 
following commutative diagram: 

q,  %”+I Q x W”+’ - Q XSU(>) 

n Q , M  
Projection maps are related by ~ ’ 0 4 ,  = Topi-. The internal states of the system are 
described by the cross sections in the complex vector bundle V,. The V, is a trivial 
%...-Ala “ U I I U I C ,  ‘Ill” hoe-- ,,G,,*G +he U,= n-_rr CIYr.> ~ C C L L v I I a  Lea,.-e “CY”.I.b c2J+l-.Ja!i;ed f,,,-oEs ;he ix!erxa! 
space M. To illustrate this idea, we proceed as follows: 

A W2’+’-valued function f o n  0 is said to be D’-equivalent if it satisfies f ( g x )  = 
D ’ ( g ) f ( x ) .  For each D’-equivalent function, there corresponds a cross section in the 
complex vector bundle V,, and vice versa. Let 4: be the one-to-one correspondence 
from the cross section to the D’-equivariant function. 

On the other hand, let U denote the cross section of T :  Q+ M. Then any point x 
of Q is of the form gu(u) ,  U E  M. Therefore we havef(x)=D’(g)f(u(u)).  One can 
then identify @ = p u  with a cross section. The components of f are f k ( x ) =  
Zz=, D{,,,(g)@,,,(u). More precisely, the correspondence can be traced by the following 
commutative diagram: 

M-M. 
On the other hand, we apply the Casimir operator 

j ’ D ’ ( g )  = j ( j + l ) D ’ ( g )  
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to cross sections in the complex vector bundle y which can also be regarded as 
v2J+’ 

Furthermore, one can construct the Hilbert space of square-integrable sections, 
and construct connection, curvature on the complex vector bundle V,. To set up 
quantum mechanics for internal states of the quantum system, it is to obtain the internal 
Hamiltonian operator acting on cross sections in by direct calculations or by applying 
the technique of geometric quantization. 

One of the crucial parts of the above geometric setting of quantum system is that 
the SU(2) action (in proposition 1) can he described by introducing an amazing 
algebraic structure on the operations of basis elements of the total space of the principal 
fibre bundle. It would be interesting to know how to build u p  the parameter spaces 
setting in Berry’s phase situation [8]. It is also interesting to set up the SU(3) case or 
higher degree of freedom for the internal motion of the quantum system by applying 
Boii’s periodicity formuia. 

-valued functions on ther internal space M. 
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